
Cheap Trickles

Jakob Egger∗

IST Austria
Chris Wojtan†

IST Austria

Figure 1: By exploiting symmetries of the physical system, we can effectively reduce it to lower dimensions. This allows us to perform highly
efficient yet detailed simulations of phenomena such as droplet pinch-off.

Abstract

We suggest a novel approach to large scale fluid dynamic simula-
tions with free surfaces. Rather than optimizing a generic method
for arbitrary systems, we search for methods that are optimized for
specific contexts such as thin sheets, spindles, or droplets. Our aim
is to combine these distinct methods in a single simulation. As a
first step, we present a method for handling thin spindles of fluid
and their breakup into droplets.

Keywords: fluid jets, free surface flow, droplet pinch-off

1 Introduction

The major problem for free surface fluid simulations is the sheer
amount of details required for convincing graphics. A single droplet
falling onto a liquid surface can cause a crown splash with thin
sheets dissolving into dozens of tiny droplets. With current meth-
ods, the number and size of these features is limited by the grid
spacing. Even if we use an adaptive grid, it would be prohibitively
expensive to simulate the hundreds and thousands of sheets and
spindles and droplets caused by a breaking wave. But without these
small features, the breaking wave will hardly be convincing; it will
resemble a thick oily fluid.

On the other hand, some of these features on their own might be
trivial to simulate. For example, a particle solver could easily simu-
late thousands of spherical droplets in free fall. In a similar manner,
we could imagine simulating a spindle of liquid using a specialized
method. We would not model it as three dimensional body of fluid,
but rather as a curve in 3D space, a thread with a radius varying
along its length. This would effectively reduce it to a single dimen-
sion and greatly reduce the computational complexity. Continuing
down this path, a sheet of liquid could be modelled using a two-
dimensional height field. Figure 2 illustrates this idea.

Inherent to all these models is that the level of detail can be in-
creased to simulate effects at small scales without requiring a cu-
bic increase in grid points. But it is even more exciting that this
approach would allow to taylor each separate method to the appli-
cation. For example, when simulating hundreds of tiny droplets,

∗e-mail: jakob.egger@ist.ac.at
†e-mail: chris.wojtan@ist.ac.at

Figure 2: Our ultimate goal is to create a fluid simulator that can
automatically use different solvers based on the topology of the
fluid. In the example above, the splash on the left could be mod-
elled as a 2D sheet with connected 1D threads and disconnected
droplets modelled as particles. The right half illustrates what the
‘backbone’ of this model would look like.

oscillations of their surface will not be visible in the final graphic,
but volume loss would look strange. So we would optimise the
method to conserve volume.

As a first step towards this vision, we will look at the 1D case, a
fluid jet. The behavior of fluid jets has been the subject of many
previous works. Most notable for our application is an Eulerian
scheme for threads with a vertical centerline developed by [Eggers
and Dupont 1994]. Their model has been extended by [Lee et al.
2006] to allow for arbitrary centerlines in 3D. However, the method
used by Lee et al required resampling at every simulation step, mak-
ing their approach unsuitable for low viscosity fluids. A purely La-
grangian approach for high viscosity liquid threads was presented
by [Bergou et al. 2010].

We are most interested in the behavior of surface tension driven ef-
fects in fluids with low viscosity. We therefore build on the work of
Eggers and Dupont, and try to adapt their work to the requirements
of computer graphics.



2 A Model for Fluid Jets

z

r

z

r

h(z)

Figure 3: Left: A jet with an ‘inflow’ boundary on top and free
boundary on the bottom end; right: a droplet with free boundaries
on both ends. The jets are symmetric around the z-axis, and the
surface is defined by h(z).

We consider the geometry shown in figure 3. A jet of water flows
along the vertical z-axis. [Eggers and Dupont 1994] introduced an
approximation of the full Navier-Stokes equations that allows us to
describe the jet using only one-dimensional functions: The axial
velocity v(z), the radius of the jet h(z) and the pressure inside the
jet p(z). They derive the following set of differential equations:

v̇ = −vv′ − 1

ρ
p′ + g + 3µ

[
v′′ + 2

h′

h
v′
]

(1)

p = σ

[
1 + h′2 − hh′′

h (1 + h′2)3/2

]
(2)

ḣ = −vh′ − 1

2
v′h (3)

ρ denotes the density of the fluid, g is the gravitational acceleration,
µ is the dynamic viscosity of the fluid, and σ is the surface tension.

We have explicit equations for v̇ and ḣ. v̇ consists of an advec-
tion term, a pressure term that essentially models surface tension
forces, an external force, and a viscosity term. ḣ consists of an ad-
vection term and a volume conservation term. The straightforward
approach would be to simply use an explicit forward Euler integra-
tor. However, the advection terms make explicit integration unsta-
ble. We found that applying a semi-Lagrangian advection scheme
resolves the instability, and we were able to use explicit integration
for the remaining terms.

2.1 Discretisation

h(i-1)
h(i)

h(i+1)

z(i-1) z(i) z(i+1)
v(i-1) v(i)

Figure 4: Velocities are stored halfway between grid points.

We chose a set of grid points z(i) that are not necessarily uniform.
(Arbitrary grid points will make dealing with boundary conditions
easier.) The radii h(i) are stored on the grid points. Since pressure
p depends on h, h′ and h′′, we also evaluate the pressure values p(i)

on the grid points. Beside advection, the most important term for
v is the pressure term containing p′. We therefore decided to store
the velocities v(i) at midpoints 1

2
[z(i) + z(i+1)]. This is also ideal

when looking at the equation for h, as the volume conservation term
depends on v′.

2.2 Advection

As stated above, h and v contain a nonlinear advection term that
is prone to making the simulation unstable. A proven technique to
handle this instability is to use semi-Lagrangian advection, or the
‘method of characteristics’ as described in [Stam 1999] and [Brid-
son 2008]. This method is very intuitive: To determine the new
value of h or v at a specific grid point z, we simply determine
where a particle at this location would have been at the previous
time step, denoted by z0. Then we take the value of h or v from
this location. For backtracing the particle we use a second order
Runge Kutta method:

zmid = z − δt

2
v(z) (4)

z0 = z − δt v(zmid) (5)

The problem with this method is that the z0 is unlikely to be on
a grid point, so we must interpolate the velocity and radius fields.
This leads to numerical viscosity, and simple linear interpolation
additionally causes severe volume loss. This can be alleviated by
using Catmull-Rom interpolation (fitting a cubic spline to the val-
ues and derivatives). For stability, the interpolated values must be
clipped to the neighboring values to prevent overshooting.

2.3 Pressure

The pressure p depends on h, h′ and h′′. The straightforward way
is to determine h′ and h′′ using centered differences, and then cal-
culate the pressure from that:

h′(i) =
h(i) − h(i−1)

z(i) − z(i−1)
+
h(i+1) − h(i)

z(i+1) − z(i)
− h(i+1) − h(i−1)

z(i+1) − z(i−1)

h′′(i) =
2

z(i+1) − z(i−1)

[
h(i+1) − h(i)

z(i+1) − z(i)
− h(i) − h(i−1)

z(i) − z(i−1)

]
p(i) = σ

[
1 + h′(i)

2 − h(i)h′′(i)

h(i)
(
1 + h′(i)

2
)3/2

]
(6)

(a) z

h

(b) z

h

Figure 5: (a) Vertical parabolas are fitted to three points on a cir-
cle. This is a good approximation in the middle (green), but not at
the end (red). (b) Fitting a horizontal parabola instead works.

However, this method breaks down when the radius become very
steep, for example close to the end of a spherical drop. Centered
difference basically fits a parabola of the form h = k(z−z0)2+d to
three grid points, but in this case it would be better to fit a parabola
of the form z = k(h − h0)

2 + d. This is equivalent to using the
centered difference formulas on the inverse of h to determine z′ and



z′′. Then we can use the well known formulas for the derivatives of
inverse functions to calculate h′ and h′′.

z′(i) =
z(i) − z(i−1)

h(i) − h(i−1)
+
z(i+1) − z(i)

h(i+1) − h(i)
− z(i+1) − z(i−1)

h(i+1) − h(i−1)

z′′(i) =
2

h(i+1) − h(i−1)

[
z(i+1) − z(i)

h(i+1) − h(i)
− z(i) − z(i−1)

h(i) − h(i−1)

]
h′(i) =

1

z′(i)
(7)

h′′(i) =
z′′(i)

(z′(i))3
(8)

By choosing one of these two methods, we can reliably determine
the pressure at all grid points.

2.4 Boundary conditions

We examine two kinds of boundary conditions. The first are fixed
velocity and radius at the boundary (eg. a jet emerging from a noz-
zle). These are simple to implement: One simply does not change
the radius and the adjacent velocity at the boundary.

The more complicated case is the free boundary (the end of a
droplet). We must somehow keep track of where the surface of
the droplet is. We do this by making the final grid point movable:
it moves with the fluid. As soon as the distance of this boundary
point to the next grid point becomes larger (or smaller) than a spe-
cific threshold, we insert (or remove) a grid point. The radius h
at the boundary point is zero. Due to the staggered velocities, we
don’t need a velocity at the grid point, but we need a pressure value.
We cannot use (6) because it diverges for h = 0. The simplest way
is to fit a paraboloid to the end of the jet, with the apex at the bound-
ary point. Then we can calculate the mean curvature at the tip and
use that as the pressure at the endpoint:

p(0) = 4σ
z(1) − z(0)

h(1)2
(9)

This is all we need to update the velocity. But we still need a way to
advect the free end point. Simply moving the end point with the ad-
jacent velocity value works as long as the end point is receding, ie.
moving inwards. As soon as the end point is moving away from the
fluid, this method leads to significant volume loss. We compensated
this effect with a numerical volume conservation term.

3 Results and Conclusion

We have written a Mac OS X application that implements the al-
gorithm outlined in the previous section and provides an interactive
interface for exploring the workings of the algorithm. Our test case
consisted of a jet with an ‘inflow’ boundary condition on top, with
a defined radius and inflow velocity. The fluid is accelerated down-
wards by gravity. Depending on inflow velocity, surface tension
and viscosity, we might see droplets forming and pinching off, or
a stable stream would evolve that only breaks up once it becomes
thinner than some threshold radius.

Viscosity was the limiting factor for stability. Due to the explicit
integration scheme, we needed to use very small time steps for large
viscosities. However, there was also a limit on the other side: If we
set viscosity to zero, the surface tension/pressure term blows up the
simulation.

The most difficult part of the problem is the handling of free bound-
ary conditions. While our method provides excellent results in

the stationary case, there is still room for improvement when the
boundary conditions move quickly. This is especially visible when
looking at a droplet that is accelerated by gravity. The translation
should ideally keep the profile of the droplet stationary, but numer-
ical problems can cause substantial volume loss. We were able to
compensate for this using a volume conservation term, but this term
in turn can cause strange artefacts such as spikes protruding from
otherwise perfectly spherical droplets.

In conclusion, we think that this method has great potential and
demonstrates that it is possible to significantly reduce the complex-
ity of fluid dynamics simulations when we take topology of the fluid
into account. This specialized model for jets retains many impor-
tant effects such as droplet pinch-off at a fraction of the complexity
of a full solver. If we can extend this model to arbitrary center-
lines in 3D, we will be able to use it to supplement a full solver for
efficient handling of small details.

References

BERGOU, M., AUDOLY, B., VOUGA, E., WARDETZKY, M., AND
GRINSPUN, E. 2010. Discrete viscous threads. ACM Transac-
tions on Graphics (TOG) 29, 4, 116.

BRIDSON, R. 2008. Fluid simulation for computer graphics. Ak
Peters Series. A K Peters.

EGGERS, J., AND DUPONT, T. 1994. Drop formation in a one-
dimensional approximation of the navier–stokes equation. Jour-
nal of fluid mechanics 262, 1, 205–221.

LEE, S., OLSEN, S., AND GOOCH, B. 2006. Interactive 3d fluid
jet painting. In Proceedings of the 4th international symposium
on Non-photorealistic animation and rendering, ACM, 97–104.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, SIGGRAPH ’99, 121–128.


